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Abstract
We demonstrate that recent experimental data (Castel et al 2009 J. Phys.: Condens. Matter
21 452201) on the tungsten bronze compound (TBC) Ba2Prx Nd1−xFeNb4O15 can be well
explained in our model predicting a crossover from ferroelectric (x = 0) to orientational
(dipole) glass (x = 1), rather then relaxor, behavior. We show that, since a ‘classical’ perovskite
relaxor like Pb(Mn1/3Nb2/3)O3 is never a ferroelectric, the presence of ferroelectric hysteresis
loops in the TBC shows that this substance actually transits from ferroelectric to orientational
glass phase with x growth. To describe the above crossover theoretically, we use the simple
replica-symmetric solution for the disordered Ising model.

(Some figures in this article are in colour only in the electronic version)

Disordered dielectrics and ferroelectrics have been attracting a
great deal of attention from scientists for a long time due to
additional possibilities (governed by disorder) to control their
physical properties which might be useful for applications.
The disordered dielectrics can be, in principle, divided into
two classes. One of them comprises the compounds like
KTaO3:Li (KTL), Nb (KTN) and Na, which undergo a
crossover between ferroelectric and orientational (dipole) glass
phases [1], while the other class may be related to so-called
relaxor ferroelectrics. The latter substances, actually never
being ferroelectrics [2, 3], belong to the perovskite family.
Their general formulae are Pb(B1/2B′

1/2)O3 (the so-called 1:1
family) and Pb(B1/3B′

2/3)O3 (the so-called 1:2 family) with
the B ion being Mn, Zn, Sc, Nb or Ta. For example,
materials as such Pb(Sc1/2Nb1/2)O3 (PSN), Pb(Sc1/2Ta1/2)O3

(PST) (1:1 family) or Pb(Mn1/3Nb2/3)O3 (PMN), Pb(Zn1/3,
Nb2/3)O3 (PZN) (1:2 family) are considered in the literature
to be ‘classical’ relaxors.

The main reason for the above relaxors not to become
ferroelectrics is the non-stoichiometry of the position of the
B ion in their perovskite structure. This non-stoichiometry
actually ‘spoils’ the phonon spectrum inherent in the
perovskite structure, destroying the ferroelectrically important

1 http://draco.uni.opole.pl/∼stefan/VStephanovichDossier.html.

soft mode (see [4] and references therein). The latter fact
manifests itself in many observable quantities of relaxors, to
name a few, the smearing of the ferroelectric phase transition
and the appearance of additional low-temperature peaks in
dielectric spectra obeying the Vogel–Fulcher law [5]. There
are, however, differences between relaxors and disordered
dielectrics like KTL. The major difference is that, since the
above relaxors do not exhibit macroscopic ferroelectricity,
they never have ferroelectric hysteresis, while the substances
like KTL exhibit it in their ferroelectric and mixed ferroglass
phases, see, e.g., [6]. As the tungsten bronze compound (TBC)
Ba2Prx Nd1−xFeNb4O15 exhibits ferroelectric hysteresis, which
disappears with the growth of Pr content x , it rather shows
the crossover between ferroelectric and dipole glass behavior
similar to that in the KTL family.

In this paper, on the basis of analysis of the experimental
facts about the TBC [7], we come to the conclusion that
this substance demonstrates mixed ferroelectric–orientational
glass, rather than relaxor, behavior. To investigate this
crossover theoretically, we utilize the simple model, based
on the replica-symmetric solution for the disordered Ising
model. We show that our simple model is able to describe
qualitatively both the phase diagram and hysteresis loops in
the TBC. Based on our previous results on the KTL family
of disordered ferroelectrics, we make predictions about the
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(b)

Figure 1. The phase diagram of the system under consideration.
Panel (a) depicts a schematic picture with the Griffiths phase shown.
Panel (b) reports the approximations Tc(x) = 290.95
+ 29.05(1 − x) K and Tg(x) ≈ 157.2 + 11.57x (full lines) and
experimental dependences [7] Tc(x) and Tg(x) (squares). Critical x
values for glassy xg and ferroelectric xf are also shown.

dynamical properties of the TBC as well as about the absence
of the Curie–Weiss law in the paraelectric phase of the TBC.
The latter fact may be related to the occurrence of a Griffiths
(para-glass) phase [8] in this substance. The schematic phase
diagram of the TBC and similar substances, where a crossover
from ferroelectric to glassy behavior occurs, is reported in
figure 1(a). This phase diagram is more or less standard (see,
e.g., [1]) except for the region where the Griffiths (para-glass)
phase is realized. The boundaries of this region may, of course,
vary from substance to substance so that the para-glass phase
may penetrate deeper in the paraelectric and/or dipole glass
phase. This is because the different strength of the ‘glassy
interaction’ between dipoles leads to the formation of glassy
clusters (which is a physical mechanism behind the Griffiths
phase) at higher or lower temperatures. Consequently, these
clusters merge into an infinite one (signifying the glassy phase
onset) at higher or lower temperatures.

To describe theoretically the ferroelectric–orientational
glass crossover behavior in the TBC, we should know what
kind of dipoles can order ferroelectrically in this material and
how many permissible orientations in the crystal lattice do
they have. For example, it is well known (see, e.g., [9] and
references therein) that Li in KTaO3 forms impurity dipoles
due to the off-central position of Li in a host KTaO3 lattice.
These dipoles (at T < Tc(x) and at x > xcr, where xcr is
the Li critical content) can order ferroelectrically and have six

permissible orientations (along the [100] kind of direction) in
a host lattice. As this information is absent in the TBC, we
describe the thermodynamic properties of this substance by
the simplest possible model of two-orientable dipoles. In such
a model, to account for interplay between ferroelectric and
glassy behavior, we use the replica formalism for a random
Ising model. Namely, we consider the Hamiltonian

H = − 1
2

∑

i j

Ji j S
z
i Sz

j − E
∑

i

Sz
i , (1)

where E ≡ Ez is an external electric field (in energy units)
and the random interactions Ji j between pseudospins Sz

i and
Sz

j (Sz ≡ ±1) are distributed according to Gaussian law:

P(J ) = 1

�J
√

2π
exp

(
− (J − J̄)2

2(�J )2

)
, (2)

where J̄ and �J are, respectively, the mean value (responsible
for long-range ferroelectric order formation) and variance
(responsible for realization of the glassy order parameter
and destruction of long-range order) of random interactions.
To describe the dependence of the TBC thermodynamic
characteristics on Pr content x , the parameters J̄ and �J
should be functions of x . Both these quantities will be
extracted below from the comparison of temperatures Tc

(ferroelectric phase transition temperature) and Tg (glassy
freezing transition temperature) with their experimental values.

Conventional replica formalism (see, e.g., [12, 13]), being
applied to Hamiltonian (1) (with respect to equation (2)) gives
the following standard (so-called replica-symmetric [12, 13])
equations for long-range m (dimensionless spontaneous
polarization) and glassy q order parameters:

m = 1√
2π

∫ ∞

−∞
e− y2

2 tanh

[
E + J̄m + y�J

√
q

kBT

]
dy,

q = 1√
2π

∫ ∞

−∞
e− y2

2 tanh2

[
E + J̄m + y�J

√
q

kBT

]
dy,

(3)

where kB is the Boltzmann constant. These equations (along
with the corresponding free energy function [13]) define all
equilibrium thermodynamic properties of the system under
consideration. We note here the well-known fact that
the replica-symmetric solution is unstable against replica-
symmetry breaking. Under the action of external field E
one can draw a borderline, separating the regions of stable
and unstable replica-symmetric solutions. For the field-
temperature variable plot, this line is known as the de Almeida–
Thouless (AT) line [14]. A standard (in replica formalism) but
lengthy calculation leads to the following criterion of replica-
symmetric solution stability:

(�J )2

(kBT )2

1√
2π

∫ ∞

−∞
e− y2

2
dy

cosh4
[

E+ J̄ m+y�J
√

q
kB T

] < 1. (4)

To obtain the AT line from equation (4), we should solve it (the
equality in equation (4)) simultaneously with equations (3) for
order parameters. Our analysis shows that the presence of the

2
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long-range order parameter m plays a role of an additional (to
the external one) stabilizing field so that the replica-symmetric
solution (3) in our case is stable almost everywhere on the E–T
plane except for the very low-temperature region. This result
is correct for all x except the point x = 0, where the system
is ordered. We note that different versions of the above replica
formalism had been used to describe the disordered dielectrics
like proton glasses [10] and relaxor ferroelectrics (see [11] and
references therein).

First we use equations (3) to calculate the T –x (T is a
temperature) phase diagram of the system, i.e. the dependences
Tc(x) and Tg(x), which should be calculated for E = 0 in
equations (3). Namely, to find Tc, we put m → 0 in the first
equation (3) and expand its integrand at small m up to the first
nonvanishing term. This yields

tanh

[
J̄m + y�J

√
q

kBT

]
≈ tanh

[
y�J

√
q

kBT

]

+ J̄m

kBT

(
1 − tanh2

[
y�J

√
q

kBT

])
. (5)

Substitution of equation (5) into the first equation (3) yields
the vanishing of the first term, while the second one gives the
equation for Tc:

kBTc = J̄(1 − q0(Tc)) ≡ J̄√
2π

∫ ∞

−∞
e− y2

2
dy

cosh2
[

y�J
√

q
kBTc

] .

(6)
Now we pay attention to the fact that, since q ≡ 0 at

T > Tg, so that q(Tc > Tg) = 0, we immediately obtain from
equation (6) that kBTc = J̄ . Then, putting q → 0 in the second
equation (3), we obtain the expression for Tg(x). Finally, the
expressions for both transition temperatures are

kBTc = J̄ , kBTg = �J. (7)

To deduce the dependences of J̄(x) and �J(x), we refer
to figure 5 from [7], where the experimental dependences
Tc(x) and Tg(x) for the TBC are reported. It is seen that
there are critical concentrations for glassy xg ≈ 0.2 and
ferroelectric xf ≈ 0.8 order realizations. At all other values
of x the dependences Tc(x) and Tg(x) are almost linear.
These facts suggest that Pr content dependence of the phase
transition temperatures, and hence the above parameters of
the interaction distribution, should be chosen in the form of
a power series in x :

J̄ (x) =
{

0, x � xf

J0 + a1x + a2x2 + · · · , x < xf,

�J (x) =
{

�J0 + b1x + b2x2 + · · · , x > xg

0, x � xg.
(8)

Here J0 defines the mean interaction between dipoles in the
TBC at x = 1, having the physical meaning of a mean electric
field (in energy units) acting between the dipoles. In turn,
�J0 defines the maximal (at x = 1) variance of random
interactions. Comparison of equations (7) and (8) shows the
other meaning of the parameters J0 and �J0. Namely, J0

defines the mean-field (i.e. at x < xg, where the system
is almost completely ordered) ferroelectric phase transition
temperature, while �J0 measures the maximal (at x > xf)
glassy freezing temperature. The situation here is qualitatively
similar to that in KTL [1]. Note that dependences (8) reflect
the physics of the system under consideration: at x < xg

the width of the distribution function tends to zero so that
Gaussian (2) reduces to a δ function. It can be shown [15] that
this δ function generates the well-known mean-field equation
m = tanh(m J0/kBT ) for long-range parameter m in the
ordered Ising model. On the other hand, at x > xf the mean
value J̄ equals zero so that the distribution function (2) remains
Gaussian but with zero mean, which leads to the situation
when the system admits only the glassy order parameter,
see, for example, [12]. We note here that, while at all x
values except critical concentrations the dependences Tc(x)

and Tg(x) are almost linear, near xf,g the whole power series (8)
comes into play. Actually, in [7], the finite values of phase
transition temperatures appear abruptly near xf,g. Within the
replica formalism, it is possible to obtain the equations for
the above critical concentrations xf,g. The calculation of
xf,g, however, involves more subtle analysis than that based
on simple equations (3), as below Tg the replica-symmetric
solution (3) is unstable. The results of such an analysis
will be published elsewhere. In figure 1(b), we show the
approximation of experimental points (see figure 5 of [7])
Tc(x) and Tg(x) by linear terms in (8). The fitting linear
dependences were obtained in the form

Tc(x) ≈ 320 − 29.049x (K),

Tg(x) ≈ 157.2 + 11.57x (K).
(9)

From these dependences we can recover the values J0 ≈ 320 K
and �J0 ≈ 168.8 K. The comparison of these values shows
that J0 ≈ 1.9�J0, which means that the mean value of the
interaction is almost two times larger than its dispersion. Such
a large ratio J0/�J0 is actually responsible for the situation
when the TBC exhibits ferroelectric long-range order for the
majority of Pr contents—from x = 0 to 0.8. It is seen that the
above linear dependences approximate the experimental points
pretty well. This means that our simple replica-symmetric
solution captures qualitatively all peculiarities of a crossover
between orientational glass and ferroelectricity in the TBC.

Next we use equations (3) for the qualitative description
of ferroelectric hysteresis m(E) in the TBC. Figure 2(a)
reports the qualitative picture of a hysteresis, described by
equations (3). Namely, if T > Tc(x) (paraelectric phase), the
curve m(E) is a monotonically growing function so that both
directions of electric field variation are the same, i.e. we are on
the same curve. At T < Tc(x) the m(E) curve acquired an
‘s shape’ with a central unstable part with dm/dE < 0. This
unstable part yields the hysteretic behavior, namely jumps at
E = ±Ec, where Ec is a coercive field. These jumps, as usual,
generate the hysteresis loop as shown in figure 2(a). The results
of specific calculations for the experimental [7] temperature
T = 280 K (corresponding to the dimensionless quantity
kBT/J0 = 0.875) are reported in figure 2(b). It is seen that the
maximal coercive field is achieved at x = 0, where the whole

3
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Figure 2. The theoretical hysteresis loops m(E/J0), obtained from
solution of equations (3). Panel (a) shows the qualitative situation.
Dashed line corresponds to the unstable part of the m(E/J0) curve at
T < Tc(x). Arrows show the possible directions of sweep around the
hysteresis loop. The coercive field Ec is also shown. Panel (b)
reports a quantitative solution for kBT = 0.875J0 and different x .

system is ferroelectric. As Pr content x grows, the coercive
field decays so that at x corresponding to the Tc value, the
unstable part of the m(E) curve degenerates in a vertical line
and Ec = 0. At x values corresponding to T > Tc, we have
the paraelectric phase with a monotonic m(E) curve similar
to that from figure 2(a). We note that saturation polarization
diminishes as x grows. This is because at larger x the dilution
of the system grows so that there are less (than at x = 0)
ferroelectrically active dipoles, which gives smaller saturation
polarization.

The comparison of our theoretical hysteresis loops from
figure 2 with experimental ones from [7] shows their different
shapes in theory and experiment. While both theory and
experiment give the decay of saturation polarization as x
grows, the coercive field in the experiment and theory have
different behaviors. Namely, the experimental coercive field
depends on x only weakly, while the theoretical one depends
strongly. The latter fact gives the different shapes of theoretical
and experimental hysteresis loops. To calculate the above
shape more precisely, the consideration of repolarization of the
domain structure of the TBC in the external electric field is
necessary. This problem requires experimental investigations
of the character of the ferroelectric domain structure in the
TBC. The theoretical approach dealing with domain structure
characteristics in disordered ferroelectrics have been put

forward earlier [16]. Another way of (less physical) calculation
of hysteresis loops in the TBC is to use the Preisach model
[17]-like approach (see, e.g., [18] and references therein),
where the loops m(E) from figure 2(b) (we recollect that these
are actually the solutions of equations (3) at T < Tc(x)) can
be considered as elementary hysterons. As those hysterons are
functions of T and x , the resulting loop would also depend on
these parameters.

To conclude, in the present paper we have shown that
the tungsten bronze compound (TBC) Ba2Prx Nd1−x FeNb4O15

undergoes a crossover between ferroelectric and orientational
(dipole) glass phases rather then exhibits ‘classical’ (i.e. that
adopted in the literature) relaxor behavior. To demonstrate
that, we use the replica-symmetric solution of the disordered
Ising model which permits us to derive the dependences of
the phase transition temperatures Tc and Tg on Pr content
x . We note here that the above replica formalism permits
us to obtain the equations for critical concentrations for
ferroelectric xf and glassy order xg appearance. This issue
can be elaborated by considering the nonequilibrium (like
frequency-dependent dielectric susceptibility) properties of the
system under consideration; it is outside the framework of the
present paper.

The same replica-symmetric equations (3) have been used
to calculate the dependence m(E), determining qualitatively
the ferroelectric hysteresis in the system. We have shown
that hysteresis behaves according to the system phase diagram.
Namely, as (at given x) T approaches Tc or x → xf,
the loops monotonically shrink, giving smaller coercive field
values. At T = Tc or x = xf the loop has zero width
and coercive field Ec = 0. Although our theory describes
the decay of saturation polarization at Pr content growth, we
were not able to explain the enhancement of Ec (the ‘width’
of the hysteresis loop) in the TBC at x = 0.6, see figure 6
of [7]. The explanation of this puzzling behavior requires
(even on the level of the replica-symmetric solution (3))
more exquisite approaches (than the above simple model) like
the supposition that there are additional defects (interacting
with ferroelectrically active dipoles) in the system such that,
at certain x (e.g. at x = 0.6 in [7]), they enhance the
spontaneous polarization and consequently coercive field. The
experimental fact [7] that the paraelectric phase of the TBC
does not follow the Curie–Weiss behavior can be explained
in terms of the Griffiths (para-glass) phase realization in the
substance [8], see figure 1(a). Although the dynamics of
order parameters cannot be calculated with the help of the
above replica-symmetric solution, its qualitative description
can be made similar to that in ferroelectric polymers [19].
Such calculations are outside the framework of the present
work and will be published elsewhere. We emphasize once
more that to elucidate the interplay between ferroelectric
and orientational glass behavior in nonperovskite disordered
ferroelectrics, additional experimental investigations are highly
desirable.
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